186 MATHEMATICS

- **17.** A man starts repaying a loan as first instalment of Rs. 100. If he increases the instalment by Rs 5 every month, what amount he will pay in the 30th instalment?
- The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.

9.5 Geometric Progression (G. P.)

Let us consider the following sequences:

(i) 2,4,8,16,..., (ii)
$$\frac{1}{9}$$
, $\frac{-1}{27}$, $\frac{1}{81}$, $\frac{-1}{243}$... (iii) .01,.0001,.000001,...

In each of these sequences, how their terms progress? We note that each term, except the first progresses in a definite order.

In (i), we have
$$a_1 = 2$$
, $\frac{a_2}{a_1} = 2$, $\frac{a_3}{a_2} = 2$, $\frac{a_4}{a_3} = 2$ and so on.
In (ii), we observe, $a_1 = \frac{1}{9}$, $\frac{a_2}{a_1} = \frac{1}{3}$, $\frac{a_3}{a_2} = \frac{1}{3}$, $\frac{a_4}{a_3} = \frac{1}{3}$ and so

Similarly, state how do the terms in (iii) progress? It is observed that in each case, every term except the first term bears a constant ratio to the term immediately preceding it. In (i), this constant ratio is 2; in (ii), it is $-\frac{1}{3}$ and in (iii), the constant ratio is 0.01. Such sequences are called *geometric sequence* or *geometric progression* abbreviated as GP.

on.

A sequence $a_1, a_2, a_3, ..., a_n, ...$ is called *geometric progression*, if each term is non-zero and $\frac{a_{k+1}}{a_k} = r$ (constant), for $k \ge 1$.

 a_k By letting $a_1 = a$, we obtain a geometric progression, *a*, *ar*, *ar*², *ar*³,..., where *a* is called the *first term* and *r* is called the *common ratio* of the G.P. Common ratio in geometric progression (i), (ii) and (iii) above are 2, $-\frac{1}{3}$ and 0.01, respectively.

As in case of arithmetic progression, the problem of finding the n^{th} term or sum of n terms of a geometric progression containing a large number of terms would be difficult without the use of the formulae which we shall develop in the next Section. We shall use the following notations with these formulae:

a = the first term, r = the common ratio, l = the last term,

n = the numbers of terms,

n = the numbers of terms,

 S_n = the sum of first *n* terms.

9.5.1 General term of a G.P. Let us consider a G.P. with first non-zero term 'a' and common ratio 'r'. Write a few terms of it. The second term is obtained by multiplying a by r, thus $a_2 = ar$. Similarly, third term is obtained by multiplying a_2 by r. Thus, $a_3 = a_2r = ar^2$, and so on.

We write below these and few more terms. 1^{st} term = $a_1 = a = ar^{1-1}$, 2^{nd} term = $a_2 = ar = ar^{2-1}$, 3^{rd} term = $a_3 = ar^2 = ar^{3-1}$ 4^{th} term = $a_4 = ar^3 = ar^{4-1}$, 5^{th} term = $a_5 = ar^4 = ar^{5-1}$ Do you see a pattern? What will be 16th term?

$$a_{16} = ar^{16-1} = ar^{15}$$

Therefore, the pattern suggests that the n^{th} term of a G.P. is given by

 $a_n = ar^{n-1}.$

Thus, *a*, G.P. can be written as *a*, *ar*, ar^2 , ar^3 , ... ar^{n-1} ; *a*, *ar*, ar^2 ,..., ar^{n-1} ...; according as G.P. is *finite* or *infinite*, respectively.

The series $a + ar + ar^2 + ... + ar^{n-1}$ or $a + ar + ar^2 + ... + ar^{n-1}$ +... are called *finite* or *infinite geometric series*, respectively.

9.5.2. Sum to *n* terms of a G.P. Let the first term of a G.P. be *a* and the common ratio be *r*. Let us denote by S_n the sum to first *n* terms of G.P. Then

Case 1 If r = 1, we have $S_n = a + ar^2 + ... + ar^{n-1}$... (1) ... (1)

Case 2 If $r \neq 1$, multiplying (1) by r, we have

$$rS_n = ar + ar^2 + ar^3 + ... + ar^n$$
 ... (2)

Subtracting (2) from (1), we get $(1 - r) S_n = a - ar^n = a(1 - r^n)$

This gives
$$S_n = \frac{a(1-r^n)}{1-r}$$
 or $S_n = \frac{a(r^n - 1)}{r-1}$

Example 9 Find the 10th and n^{th} terms of the G.P. 5, 25,125,.... **Solution** Here a = 5 and r = 5. Thus, $a_{10} = 5(5)^{10-1} = 5(5)^9 = 5^{10}$ and $a_n = ar^{n-1} = 5(5)^{n-1} = 5^n$.

Example10 Which term of the G.P., 2,8,32, ... up to *n* terms is 131072?

Solution Let 131072 be the n^{th} term of the given G.P. Here a = 2 and r = 4. Therefore $131072 = a_n = 2(4)^{n-1}$ or $65536 = 4^{n-1}$ This gives $4^8 = 4^{n-1}$. So that n - 1 = 8, i.e., n = 9. Hence, 131072 is the 9th term of the G.P. **Example11** In a G.P., the 3rd term is 24 and the 6th term is 192.Find the 10th term. **Solution** Here, $a_3 = ar^2 = 24$... (1) and $a_6 = ar^5 = 192$... (2)

Dividing (2) by (1), we get r = 2. Substituting r = 2 in (1), we get a = 6. Hence $a_{10} = 6$ (2)⁹ = 3072.

Example12 Find the sum of first *n* terms and the sum of first 5 terms of the geometric

series $1 + \frac{2}{3} + \frac{4}{9} + \dots$

Since

Solution Here a = 1 and $r = \frac{2}{3}$. Therefore

$$\mathbf{S}_{n} = \frac{a\left(1-r^{n}\right)}{1-r} = \frac{\left[1-\left(\frac{2}{3}\right)^{n}\right]}{1-\frac{2}{3}} = 3\left[1-\left(\frac{2}{3}\right)^{n}\right]$$

In particular,
$$S_5 = 3\left[1 - \left(\frac{2}{3}\right)^5\right] = 3 \times \frac{211}{243} = \frac{211}{81}$$
.

Example 13 How many terms of the G.P. $3, \frac{3}{2}, \frac{3}{4}, \dots$ are needed to give the sum $\frac{3069}{512}$?

Solution Let *n* be the number of terms needed. Given that a = 3, $r = \frac{1}{2}$ and $S_n = \frac{3069}{512}$

$$\mathbf{S}_n = \frac{a \left(1 - r\right)}{1 - r}$$

Therefore
$$\frac{3069}{512} = \frac{3(1-\frac{1}{2^n})}{1-\frac{1}{2}} = 6\left(1-\frac{1}{2^n}\right)$$

or $\frac{3069}{3072} = 1 - \frac{1}{2^n}$

or

or

$$\frac{1}{2^n} = 1 - \frac{3069}{3072} = \frac{3}{3072} = \frac{1}{1024}$$
$$2^n = 1024 = 2^{10}, \text{ which gives } n = 10.$$

Example 14 The sum of first three terms of a G.P. is $\frac{13}{12}$ and their product is – 1. Find the common ratio and the terms.

Solution Let
$$\frac{a}{r}$$
, a , ar be the first three terms of the G.P. Then
 $\frac{a}{r} + ar + a = \frac{13}{12}$... (1)

and

$$\left(\frac{a}{r}\right)(a)(ar) = -1 \qquad \qquad \dots (2)$$

From (2), we get $a^3 = -1$, i.e., a = -1 (considering only real roots)

Substituting a = -1 in (1), we have

$$-\frac{1}{r}-1-r=\frac{13}{12} \text{ or } 12r^2+25r+12=0.$$

This is a quadratic in *r*, solving, we get $r = -\frac{3}{4}$ or $-\frac{4}{3}$. Thus, the three terms of G.P. are $:\frac{4}{3}, -1, \frac{3}{4}$ for $r = \frac{-3}{4}$ and $\frac{3}{4}, -1, \frac{4}{3}$ for $r = \frac{-4}{3}$, **Example15** Find the sum of the sequence 7, 77, 777, 7777, ... to *n* terms.

Solution This is not a G.P., however, we can relate it to a G.P. by writing the terms as

$$S_n = 7 + 77 + 777 + 7777 + \dots \text{ to } n \text{ terms}$$

= $\frac{7}{9}[9+99+999+9999+\dots \text{ to } n \text{ term}]$
= $\frac{7}{9}[(10-1)+(10^2-1)+(10^3-1)+(10^4-1)+\dots n \text{ terms}]$

$$= \frac{7}{9} [(10+10^2+10^3+...n \text{ terms}) - (1+1+1+...n \text{ terms})]$$
$$= \frac{7}{9} \left[\frac{10(10^n-1)}{10-1} - n\right] = \frac{7}{9} \left[\frac{10(10^n-1)}{9} - n\right].$$

Example 16 A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.

Solution Here a = 2, r = 2 and n = 10

Using the sum formula $S_n = \frac{a(r^n - 1)}{r - 1}$

We have $S_{10} = 2(2^{10} - 1) = 2046$

Hence, the number of ancestors preceding the person is 2046.

9.5.3 Geometric Mean (G.M.) The geometric mean of two positive numbers a

and b is the number \sqrt{ab} . Therefore, the geometric mean of 2 and 8 is 4. We observe that the three numbers 2,4,8 are consecutive terms of a G.P. This leads to a generalisation of the concept of geometric means of two numbers.

Given any two positive numbers *a* and *b*, we can insert as many numbers as we like between them to make the resulting sequence in a G.P.

Let $G_1, G_2, ..., G_n$ be *n* numbers between positive numbers *a* and *b* such that $a, G_1, G_2, G_3, ..., G_n$ is a G.P. Thus, *b* being the (n + 2)th term, we have

$$b = ar^{n+1}, \quad \text{or} \quad r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}.$$

$$G_1 = ar = a \left(\frac{b}{a}\right)^{\frac{1}{n+1}}, \quad G_2 = ar^2 = a \left(\frac{b}{a}\right)^{\frac{2}{n+1}}, \quad G_3 = ar^3 = a \left(\frac{b}{a}\right)^{\frac{3}{n+1}},$$

$$G_n = ar^n = a \left(\frac{b}{a}\right)^{\frac{n}{n+1}}$$

Hence

Example17 Insert three numbers between 1 and 256 so that the resulting sequence is a G.P.

Solution Let G_1, G_2, G_3 be three numbers between 1 and 256 such that 1, $G_1, G_2, G_3, 256$ is a G.P.

Therefore $256 = r^4$ giving $r = \pm 4$ (Taking real roots only)

For r = 4, we have $G_1 = ar = 4$, $G_2 = ar^2 = 16$, $G_3 = ar^3 = 64$

Similarly, for r = -4, numbers are -4,16 and -64.

Hence, we can insert 4, 16, 64 between 1 and 256 so that the resulting sequences are in G.P.

9.6 Relationship Between A.M. and G.M.

Let A and G be A.M. and G.M. of two given positive real numbers *a* and *b*, respectively. Then

$$A = \frac{a+b}{2}$$
 and $G = \sqrt{ab}$

Thus, we have

$$A - G = \frac{a+b}{2} - \sqrt{ab} = \frac{a+b-2\sqrt{ab}}{2}$$
$$= \frac{\left(\sqrt{a} - \sqrt{b}\right)^2}{2} \ge 0 \qquad \dots (1)$$

From (1), we obtain the relationship $A \ge G$.

Example 18 If A.M. and G.M. of two positive numbers *a* and *b* are 10 and 8, respectively, find the numbers.

Solution Given that
$$A.M. = \frac{a+b}{2} = 10$$
 ... (1)
and $G.M. = \sqrt{ab} = 8$... (2)

From (1) and (2), we get

$$a + b = 20$$
 ... (3)
 $ab = 64$... (4)

Putting the value of a and b from (3), (4) in the identity $(a - b)^2 = (a + b)^2 - 4ab$, we get

 $(a - b)^2 = 400 - 256 = 144$ $a - b = \pm 12$

or

... (5)

Solving (3) and (5), we obtain

$$a = 4, b = 16 \text{ or } a = 16, b = 4$$

Thus, the numbers a and b are 4, 16 or 16, 4 respectively.

EXERCISE 9.3

- 1. Find the 20th and n^{th} terms of the G.P. $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \dots$
- 2. Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
- 3. The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that $q^2 = ps$.
- 4. The 4th term of a G.P. is square of its second term, and the first term is -3. Determine its 7th term.
- 5. Which term of the following sequences:

(a)
$$2, 2\sqrt{2}, 4, \dots$$
 is 128?
(b) $\sqrt{3}, 3, 3\sqrt{3}, \dots$ is 729?
(c) $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \dots$ is $\frac{1}{19683}$?

6. For what values of x, the numbers $-\frac{2}{7}$, x, $-\frac{7}{2}$ are in G.P.?

Find the sum to indicated number of terms in each of the geometric progressions in Exercises 7 to 10:

7. 0.15, 0.015, 0.0015, ... 20 terms.

8.
$$\sqrt{7}$$
, $\sqrt{21}$, $3\sqrt{7}$, ... *n* terms.

- 9. $1, -a, a^2, -a^3, \dots n$ terms (if $a \neq -1$).
- **10.** $x^3, x^5, x^7, \dots n$ terms (if $x \neq \pm 1$).
- **11.** Evaluate $\sum_{k=1}^{11} (2+3^k)$.
- 12. The sum of first three terms of a G.P. is $\frac{39}{10}$ and their product is 1. Find the common ratio and the terms.
- **13.** How many terms of G.P. 3, 3^2 , 3^3 , ... are needed to give the sum 120?
- 14. The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to *n* terms of the G.P.
- **15.** Given a G.P. with a = 729 and 7th term 64, determine S₇.
- 16. Find a G.P. for which sum of the first two terms is -4 and the fifth term is 4 times the third term.
- **17.** If the 4th, 10th and 16th terms of a G.P. are *x*, *y* and *z*, respectively. Prove that *x*, *y*, *z* are in G.P.

- **18.** Find the sum to *n* terms of the sequence, 8, 88, 888, 8888....
- **19.** Find the sum of the products of the corresponding terms of the sequences 2, 4, 8,

16, 32 and 128, 32, 8, 2, $\frac{1}{2}$.

- **20.** Show that the products of the corresponding terms of the sequences *a*, *ar*, ar^2 , ... ar^{n-1} and A, AR, AR², ... ARⁿ⁻¹ form a G.P, and find the common ratio.
- **21.** Find four numbers forming a geometric progression in which the third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
- 22. If the p^{th} , q^{th} and r^{th} terms of a G.P. are *a*, *b* and *c*, respectively. Prove that

$$a^{q-r}b^{r-p}c^{P-q}=1.$$

- 23. If the first and the n^{th} term of a G.P. are *a* and *b*, respectively, and if P is the product of *n* terms, prove that $P^2 = (ab)^n$.
- 24. Show that the ratio of the sum of first *n* terms of a G.P. to the sum of terms from

 $(n+1)^{\text{th}}$ to $(2n)^{\text{th}}$ term is $\frac{1}{r^n}$.

- 25. If *a*, *b*, *c* and *d* are in G.P. show that $(a^2 + b^2 + c^2) (b^2 + c^2 + d^2) = (ab + bc + cd)^2$.
- 26. Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
- 27. Find the value of *n* so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the geometric mean between *a* and *b*.
- 28. The sum of two numbers is 6 times their geometric mean, show that numbers

are in the ratio $(3+2\sqrt{2}):(3-2\sqrt{2}).$

29. If A and G be A.M. and G.M., respectively between two positive numbers,

prove that the numbers are $A \pm \sqrt{(A+G)(A-G)}$.

- **30.** The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of 2^{nd} hour, 4^{th} hour and n^{th} hour ?
- **31.** What will Rs 500 amounts to in 10 years after its deposit in a bank which pays annual interest rate of 10% compounded annually?
- **32.** If A.M. and G.M. of roots of a quadratic equation are 8 and 5, respectively, then obtain the quadratic equation.